The clinical and biological significance of \textit{HOPX} in \textit{de novo} AML

Chein-Chin Lin1,2

1Department of Laboratory medicine, 2Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
HOPX is an unusual homeobox gene

- HOPX: homeodomain only protein homeobox
- The **smallest** known homeodomain protein
- Composed of a divergent protein incapable of DNA binding
- Important in cardiac development
HOPX is an unusual homeobox gene

- **HOPX**: homeodomain only protein homeobox
- The **smallest** known homeodomain protein
- Composed of a divergent protein incapable of DNA binding
- Important in cardiac development

Cell, 2002
The role of *HOPX* has been explored in various cancers:

- **Nasopharynx**: Ren, Nat comm, 2017
- **Lung**: Chen, Int J Cancer, 2007
- **Pancreas**: Waraya, BMC Cancer, 2012
- **Stomach**: Ooki, Oncogene, 2010
- **Colon**: Harada, Anticancer Res, 2011
- **Uterus**: Yamaguchi, Int J Cancer, 2009
Reduced $HOPX$ expression is associated with advanced disease status

Early-stage NPC

- Normal ($n = 6$)
- LN− ($n = 10$)
- LN+ ($n = 10$)
- DM ($n = 10$)

Advanced-stage NPC

- Normal
- NPC

IHC score

- $P = 0.006$
- $P = 0.003$
- $P = 0.002$

$HOPX$ methylation rate (%)

- $P = 0.019$

Nat Commun. 2017 Feb 1;8:14053.
HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma
Lung

Homeobox gene *HOP* has a potential *tumor suppressive* activity in human lung cancer
Cancer specific promoter CpG Islands hypermethylation of *HOP* homeobox (HOPX) gene and its potential tumor suppressive role in pancreatic carcinogenesis

Pancreas
Waraya, BMC Cancer, 2012
Potential utility of \textit{HOP} homeobox gene promoter \textit{methylation} as a marker of tumor aggressiveness in gastric cancer

\textbf{Stomach} \textit{Ooki, Oncogene, 2010}
Methylation of the homeobox gene, *HOPX*, is frequently detected in poorly differentiated colorectal cancer.

Harada, Anticancer Res, 2011
Homeobox gene *HOPX* is epigenetically silenced in human uterine endometrial cancer and suppresses estrogen-stimulated proliferation of cancer cells by inhibiting serum response factor.

Yamaguchi, Int J Cancer, 2009
HOPX is a tumor suppressor gene in solid cancers.

HOPX expression was lowered by promoter hypermethylation during tumorigenesis.
HOPX is a tumor suppressor gene in solid cancers.

HOPX expression was lowered by promoter hypermethylation during tumorigenesis.

Q: What about AML?
Patients and methods

• 347 de novo AML pts BM samples in NTUH (1995-2011) for mRNA microarray analysis; median f/u
• 227 pts received standard induction chemotherapy
• *Illumina Human HT-12 V4 Expression BeadChip*

347 AML pts

High *HOPX* expression: N=174

Low *HOPX* expression: N=173
HOPX expression levels and AML patients’ survival

![Graph showing OS and DFS for HOPX expression levels in NTUH data](image)

- **Lower HOPX**
- **Higher HOPX**

OS
- Median 23.7 vs. 116.8
- N = 124
- N = 103
- P < 0.0001

DFS
- Median 5.9 vs. NR
- N = 124
- N = 103
- P < 0.0001

NTUH data
HOPX expression levels and AML patients’ survival

- **Lower HOPX**
- **Higher HOPX**

NTUH data

A. Median 23.7 vs. 116.8
 - NTUH: N = 124
 - P < 0.0001

B. Median 5.9 vs. NR
 - NTUH: N = 124
 - P < 0.0001

C. Median 11.1 vs. 19.2
 - TCGA: N = 91
 - P = 0.006

D. Median 7.8 vs. 33.3
 - GSE12417: N = 81
 - P < 0.0001
Validation between array data and qPCR

\[y = 0.916x - 14.271 \]

\[R = 0.63 \]

NTUH data
Methylation level of HOPX

U937 cell line

Pts samples

Methylation level of HOPX
Hypermethylation of \textit{HOPX} is \textbf{NOT} observed in AML
Clinical manifestations between AML patients with high/low *HOPX* expression

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (n=347)</th>
<th>Higher HOPX Expression (n=174)</th>
<th>Lower HOPX Expression (n=173)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>196</td>
<td>99</td>
<td>97</td>
<td>0.914</td>
</tr>
<tr>
<td>Female</td>
<td>151</td>
<td>75</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Age (year)^1</td>
<td>60 (15-91)</td>
<td>53 (18-88)</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Lab data^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (/μL)</td>
<td>14520 (580-34120)</td>
<td>25110 (380-423000)</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>8.2 (3.3-13.0)</td>
<td>8.0 (3.7-16.2)</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>Platelet (x1,000 /μL)</td>
<td>55.5 (6-655)</td>
<td>41.0 (2-412)</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Blast (/μL)</td>
<td>6477.8 (0-283213)</td>
<td>10773.5 (0-369070)</td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>794 (202-7734)</td>
<td>1042 (242-13130)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>FAB^1</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>M0</td>
<td>6</td>
<td>5 (83.3)</td>
<td>1 (16.7)</td>
<td>0.099</td>
</tr>
<tr>
<td>M1</td>
<td>67</td>
<td>42 (62.7)</td>
<td>25 (37.3)</td>
<td>0.021</td>
</tr>
<tr>
<td>M2</td>
<td>109</td>
<td>48 (44.0)</td>
<td>61 (56.0)</td>
<td>0.104</td>
</tr>
<tr>
<td>M3</td>
<td>28</td>
<td>4 (14.3)</td>
<td>24 (85.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>M4</td>
<td>103</td>
<td>58 (56.3)</td>
<td>45 (43.7)</td>
<td>0.126</td>
</tr>
<tr>
<td>M5</td>
<td>20</td>
<td>4 (20.0)</td>
<td>16 (80.0)</td>
<td>0.006</td>
</tr>
<tr>
<td>M6</td>
<td>8</td>
<td>7 (87.5)</td>
<td>1 (12.5)</td>
<td>0.032</td>
</tr>
<tr>
<td>Undetermined</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Induction response^**</td>
<td>227</td>
<td>103</td>
<td>124</td>
<td><0.001</td>
</tr>
<tr>
<td>CR</td>
<td>166</td>
<td>60 (58.3) %</td>
<td>106 (85.5) %</td>
<td><0.001</td>
</tr>
<tr>
<td>PR+refractory</td>
<td>45</td>
<td>35 (34.0) %</td>
<td>10 (8.1) %</td>
<td><0.001</td>
</tr>
<tr>
<td>Induction death</td>
<td>16 (7.0)</td>
<td>8 (7.8)</td>
<td>8 (6.5)</td>
<td>0.702</td>
</tr>
</tbody>
</table>

^1 number of patients.
^2 median (range).
* number of patients (% with higher or lower *HOPX* expression in the AML subtype).
** number of patients (% in the total patients or subgroup of patients with higher or lower *HOPX* expression).

Abbreviation: LDH, lactate dehydrogenase; CR, complete remission; PR, partial remission.
Association of *HOPX* expression levels with cytogenetic abnormalities

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Higher HOPX Expression</th>
<th>Lower HOPX Expression</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karyotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>58</td>
<td>11</td>
<td>47</td>
<td><0.001</td>
</tr>
<tr>
<td>t(8;21)</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td><0.001</td>
</tr>
<tr>
<td>t(15;17)</td>
<td>27</td>
<td>4</td>
<td>23</td>
<td><0.001</td>
</tr>
<tr>
<td>Intermediate</td>
<td>196</td>
<td>102</td>
<td>94</td>
<td>0.532</td>
</tr>
<tr>
<td>Normal</td>
<td>166</td>
<td>81</td>
<td>85</td>
<td>0.582</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>71</td>
<td>48</td>
<td>23</td>
<td>0.001</td>
</tr>
</tbody>
</table>

†Favorable, t(15;17), t(8;21), inv (16); unfavorable, -7, del(7q), -5, del(5q), 3q abnormality, complex abnormalities; Intermediate, normal karyotype and other abnormalities.

NTUH data
Association of HOPX expression levels with other genetic alterations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>No. of patients with alteration (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whole cohort (n=347)</td>
<td>Higher HOPX Expression (n=174)</td>
</tr>
<tr>
<td>FLT3/ITD</td>
<td>84/347 (24.2)</td>
<td>38/174 (21.8)</td>
</tr>
<tr>
<td>FLT3/TKD</td>
<td>32/347 (9.2)</td>
<td>13/174 (7.5)</td>
</tr>
<tr>
<td>N-RAS</td>
<td>59/347 (17.0)</td>
<td>27/174 (15.5)</td>
</tr>
<tr>
<td>K-RAS</td>
<td>15/347 (4.3)</td>
<td>5/174 (2.9)</td>
</tr>
<tr>
<td>PTPN11</td>
<td>22/347 (6.3)</td>
<td>11/174 (6.3)</td>
</tr>
<tr>
<td>KIT</td>
<td>15/347 (4.3)</td>
<td>4/174 (2.3)</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>66/347 (19.0)</td>
<td>41/174 (23.6)</td>
</tr>
<tr>
<td>WTI</td>
<td>26/347 (7.5)</td>
<td>12/174 (6.9)</td>
</tr>
<tr>
<td>NPM1</td>
<td>99/347 (28.5)</td>
<td>41/174 (23.6)</td>
</tr>
<tr>
<td>CEBPA (double mutation)</td>
<td>27/347 (7.8)</td>
<td>5/174 (2.9)</td>
</tr>
<tr>
<td>RUNX1</td>
<td>50/347 (14.4)</td>
<td>39/174 (22.4)</td>
</tr>
<tr>
<td>MLL/PTD</td>
<td>13/346 (3.8)</td>
<td>5/173 (2.9)</td>
</tr>
<tr>
<td>ASXL1</td>
<td>52/347 (15.0)</td>
<td>34/174 (19.5)</td>
</tr>
<tr>
<td>IDH1</td>
<td>20/347 (5.8)</td>
<td>10/174 (5.7)</td>
</tr>
<tr>
<td>IDH2</td>
<td>51/347 (14.7)</td>
<td>37/174 (21.3)</td>
</tr>
<tr>
<td>TP53</td>
<td>16/346 (4.6)</td>
<td>10/173 (5.8)</td>
</tr>
<tr>
<td>TET2</td>
<td>56/347 (16.1)</td>
<td>23/174 (13.2)</td>
</tr>
</tbody>
</table>

NTUH data
Multivariate analysis (Cox regression) on overall survival

<table>
<thead>
<tr>
<th>Variables</th>
<th>HR</th>
<th>Lower</th>
<th>Upper</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cohort (n=227)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.017</td>
<td>1.002</td>
<td>1.031</td>
<td>0.021</td>
</tr>
<tr>
<td>WBC/1000</td>
<td>1.004</td>
<td>1.001</td>
<td>1.006</td>
<td>0.012</td>
</tr>
<tr>
<td>Karyotype</td>
<td>3.725</td>
<td>2.273</td>
<td>6.105</td>
<td><0.001</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>1.522</td>
<td>0.968</td>
<td>2.391</td>
<td>0.069</td>
</tr>
<tr>
<td>CEBPA<sup>double mutation</sup></td>
<td>0.299</td>
<td>0.114</td>
<td>0.785</td>
<td>0.014</td>
</tr>
<tr>
<td>RUNX1</td>
<td>1.542</td>
<td>0.849</td>
<td>2.800</td>
<td>0.155</td>
</tr>
<tr>
<td>MLL-PTD</td>
<td>3.150</td>
<td>1.438</td>
<td>6.902</td>
<td>0.004</td>
</tr>
<tr>
<td>WT1</td>
<td>1.804</td>
<td>0.993</td>
<td>3.278</td>
<td>0.053</td>
</tr>
<tr>
<td>TP53</td>
<td>3.085</td>
<td>1.151</td>
<td>8.267</td>
<td>0.025</td>
</tr>
<tr>
<td>HOPX</td>
<td>1.172</td>
<td>1.050</td>
<td>1.307</td>
<td>0.005</td>
</tr>
<tr>
<td>HOXA9</td>
<td>1.142</td>
<td>0.815</td>
<td>1.600</td>
<td>0.441</td>
</tr>
</tbody>
</table>

*The model was generated from a stepwise Cox regression model that included age, WBC, karyotype (unfavorable cytogenetics versus others), gene mutations of FLT3, WT1, CEBPA, RUNX1, MLL, TP53 and expression level of HOXA9 and HOPX.

Abbreviations: HR, hazard ratio; CI, confidence interval; WBC, white blood cell count

NTUH data
Gene expression signature for prognostication in AML

• A three-gene expression-based risk score can refine the European LeukemiaNet AML classification. *(J hema oncol, 2016)*

• Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. *(JCO, 2014)*

• An mRNA expression signature (11-gene) for prognostication in de novo acute myeloid leukemia patients with normal karyotype. *(Oncotarget, 2016)*

• Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. *(JCO, 2013)*
Comparisons of HOPX to published prognostic gene signatures

<table>
<thead>
<tr>
<th>Predictor</th>
<th>NTUH (n=227)</th>
<th>TCGA (n=186)</th>
<th>GSE12417 (n=162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPX</td>
<td>0.001</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(1.46;1.17-1.82)</td>
<td>(1.34;1.11-1.61)</td>
<td>(1.52;1.22-1.89)</td>
</tr>
<tr>
<td>HOPX</td>
<td>0.039</td>
<td>0.015</td>
<td>0.002</td>
</tr>
<tr>
<td>3-gene score (Wilop et al.)</td>
<td>(1.29;1.01-1.65)</td>
<td>(1.31;1.05-1.63)</td>
<td>(1.43;1.15-1.78)</td>
</tr>
<tr>
<td>HOPX</td>
<td>0.125</td>
<td>0.014</td>
<td>0.009</td>
</tr>
<tr>
<td>7-gene score (Marcucci et al.)</td>
<td>(1.22;0.95-1.58)</td>
<td>(1.33;1.06-1.68)</td>
<td>(1.35;1.08-1.68)</td>
</tr>
<tr>
<td>HOPX</td>
<td>0.004</td>
<td>0.597</td>
<td>0.010</td>
</tr>
<tr>
<td>11-gene score (Chuang et al.)</td>
<td>(1.07;1.02-1.11)</td>
<td>(1.01;0.96-1.07)</td>
<td>(1.05;1.01-1.10)</td>
</tr>
<tr>
<td>HOPX</td>
<td>0.030</td>
<td>0.070</td>
<td><0.001</td>
</tr>
<tr>
<td>24-gene score (Li et al.)</td>
<td>(1.30;1.03-1.64)</td>
<td>(1.19;0.99-1.44)</td>
<td>(1.47;1.20-1.79)</td>
</tr>
</tbody>
</table>

J hema oncol, 2016

JCO, 2014

Oncotarget, 2016

JCO, 2013
Comparisons of \textit{HOPX} to published prognostic gene signatures

<table>
<thead>
<tr>
<th>Predictor</th>
<th>NTUH (n=227)</th>
<th>TCGA (n=186)</th>
<th>GSE12417 (n=162)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{HOPX}</td>
<td>0.001 (1.46;1.17-1.82)</td>
<td>0.003 (1.34;1.11-1.61)</td>
<td><0.001 (1.52;1.22-1.89)</td>
</tr>
<tr>
<td>3-gene score</td>
<td>0.103 (1.24;0.96-1.60)</td>
<td>0.005 (1.34;1.10-1.65)</td>
<td>0.601 (1.06;0.85-1.33)</td>
</tr>
<tr>
<td>\textit{HOPX}</td>
<td>0.039 (1.29;1.01-1.65)</td>
<td>0.015 (1.31;1.05-1.63)</td>
<td>0.002 (1.43;1.15-1.78)</td>
</tr>
<tr>
<td>7-gene score</td>
<td>0.014 (1.20;1.04-1.39)</td>
<td>0.356 (1.06;0.94-1.20)</td>
<td>0.117 (1.13;0.97-1.32)</td>
</tr>
<tr>
<td>\textit{HOPX}</td>
<td>0.125 (1.22;0.95-1.58)</td>
<td>0.014 (1.01;0.96-1.07)</td>
<td>0.009 (1.05;1.01-1.10)</td>
</tr>
<tr>
<td>11-gene score</td>
<td>0.004 (1.07;1.02-1.11)</td>
<td>0.597 (1.01;0.96-1.07)</td>
<td>0.010 (1.05;1.01-1.10)</td>
</tr>
<tr>
<td>\textit{HOPX}</td>
<td>0.030 (1.30;1.03-1.64)</td>
<td>0.070 (1.19;0.99-1.44)</td>
<td><0.001 (1.47;1.20-1.79)</td>
</tr>
<tr>
<td>24-gene score</td>
<td>0.005 (1.13;1.04-1.24)</td>
<td><0.001 (1.11;1.05-1.17)</td>
<td>0.041 (1.07;1.00-1.14)</td>
</tr>
</tbody>
</table>

* \textit{J hema oncol, 2016} \hspace{1cm} \textit{JCO, 2014} \hspace{1cm} \textit{Oncotarget, 2016} \hspace{1cm} \textit{JCO, 2013}
High *HOPX* expression is an independent poor prognostic factor in AML
High *HOPX* expression is an independent poor prognostic factor in AML

Q: Why poor prognosis?
Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6⁺ niche cells

Norifumi Takeda¹,²,³,*, Rajan Jain¹,²,³,*, Matthew R. LeBoeuf¹,⁴, Arun Padmanabhan¹,²,³, Qiaohong Wang¹,²,³, Li Li², Min Min Lu², Sarah E. Millar¹,⁴ and Jonathan A. Epstein¹,²,³,‡
Inter-conversion between intestinal stem cell populations in distinct niches

Norifumi Takeda¹,²,³, *, Rajan Jain¹,²,³, *, Matthew R. LeBoeuf¹,⁴, Qiaohong Wang¹,²,³, Min Min Lu², and Jonathan A. Epstein¹,²,³, #
Small intestine crypt

(Crypt base columnar stem cells)

Q: Is *HOPX* a marker of leukemia stem cell (LSC)?

HOPX is a stem cell marker in hair follicle and small intestine.
HOPX and HOX family expression in normal hematopoietic populations

GSE24759

HSC ERY MEGA GMP DC B NK NKT T

-2.0 +2.0

HOPX
HOXB2
HOXA3
HOXA7
HOXA6
HOXB3
HOXA4
HOXA5
HOXB5
HOXA9
HOXA10
MEIS1
Stem cell gene expression programs influence clinical outcome in human leukemia

A 17-gene stemness score for rapid determination of risk in acute leukaemia

Stanley W. K. Ng1*, Amanda Mitchell2*, James A. Kennedy2,3,4, Weihsu C. Chen2, Jessica McLeod3, Narmin Ibrahimova2, Andrea Arruda4, Andreea Popescu2, Vikas Gupta2,3,4, Aaron D. Schimmer2,3,4,5, Andre C. Schuh2,3,4, Karen W. Yee2,3,4, Lars Bullinger3, Tobias Herold7,8, Dennis Görlich1, Thomas Büchner10,11, Wolfgang Hiddemann7,8, Wolfgang E. Berdel10, Bernhard Wörmann14, Meyling Cheok12, Claude Preudhomme13, Hervé Dombret14, Klaus Metzeler12,14, Christian Buske15, Bob Löwenberg16, Peter J. M. Valk13, Peter W. Zandstra1, Mark D. Minden3,4,5,8, John E. Dick2,7,9, & Jean C. Y. Wang2,3,4,8
Molecular Signatures of Proliferation and Quiescence in Hematopoietic Stem Cells

Teresa A. Venezia1,2, Akil A. Merchant2,3, Carlos A. Ramos2,3, Nathan L. Whitehouse4, Andrew S. Young4, Chad A. Shaw4, Margaret A. Goodell1,2,4,5

1 Cell and Molecular Biology Program, Baylor College of Medicine, Houston, Texas, United States of America, 2 Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America, 3 Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America, 4 Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 5 Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America

A. [Graph showing marrow cellularity and HSC in cycle over days after SFU treatment]

B. [Diagram showing quiescence group TOMs 0, 1, 10, 30, genes changing over time course, and proliferation group TOM 2, 3, 6]

C. [Flowchart showing up-regulated genes in adult HSC, up-regulated in FL-HSC, and genes changing over time course]

D. [Diagram showing P-sig with 94% up-regulated in adult HSC, up-regulated in FL-HSC, and genes changing over time course]

E. [Diagram showing Q-sig with 96% up-regulated in adult HSC, up-regulated in FL-HSC, and genes changing over time course]

F. [Circle diagram showing P-sig with cP-sig at 73%, ST-HSC sig.]

G. [Circle diagram showing Q-sig with cQ-sig at 58%, LT-HSC sig.]

Adult HSC

Fetal liver HSC
Higher *HOPX* expression is associated with quiescent stem cell signature

Proliferation signature

![Box plot for Proliferation signature](image1)

Quiescence signature

![Box plot for Quiescence signature](image2)

- **Higher HOPX**: T-test P-value: 3.69e-03

P = 0.0036

- **Lower HOPX**: T-test P-value: 5.17e-04

P = 0.0005
High $HOPX$ expression is associated with quiescent stem cell character in AML
ABC transporters contribute to chemoresistance

ABC (ATP-binding cassette) transporter

ABC transporters upregulated in chemoresistant AML

- ABC A2
- ABC B1
- ABC B5
- ABC B6
- ABC C13
- ABC G1
- ABC G2

Haematologica, 2011
ABC transporters upregulated in chemoresistant AML

Independently poor prognostic

- ABC A2
- ABC B1
- ABC B5
- ABC B6
- ABC C13
- ABC G1
- ABC G2

Haematologica, 2011
Higher $HOPX$ expression is associated with chemoresistant-ABC transporters

NTUH data
Correlation between *HOPX* level and prognostic ABC transporters

<table>
<thead>
<tr>
<th>Probe</th>
<th>Higher HOPX</th>
<th>Lower HOPX</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1</td>
<td>5.879</td>
<td>5.455</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ABCB1</td>
<td>6.557</td>
<td>5.946</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ABCG1</td>
<td>7.611</td>
<td>6.880</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ABCG1</td>
<td>6.626</td>
<td>6.017</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ABCG1</td>
<td>5.931</td>
<td>5.864</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ABCG2</td>
<td>5.330</td>
<td>5.274</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NTUH data
High *HOPX* expression is associated with chemoresistance in AML
Hypermethylation of *HOPX* is NOT observed in AML

High *HOPX* expression is an independent poor prognostic factor in AML

High *HOPX* expression is associated with quiescent stem cell character in AML

High *HOPX* expression is associated with chemoresistance in AML
Generation of \textit{HOPX} gene-editing mouse model
Generation of \textit{HOPX} gene-editing mouse model

\textit{HOPX} Knockout mice \hspace{1cm} \textit{HOPX} transgenic mice
Acknowledgments

Lab colleagues
- Hwei-Fang Tien, MD, PhD
- Wen-Chien Chou, MD, PhD
- Hsin-An Hou, MD, PhD
- Yueh-Chwen Hsu
- Yuan-Yeh Kuo, MD
- Mei-Hsuan Tseng
- Chein-Jun Kao

Bioinformatics Analysis
- Yu-Chiao Chiu, MD, PhD

Chromosomal analysis
- Ming-Chih Liu

Hematologists
- Jih-Luh Tang, MD, PhD
- Ming Yao, MD
- Chi-Cheng Li, MD
- Shang-Yi Huang, MD, PhD
- Bor-Sheng Ko, MD, PhD
- Szu-Chun Hsu, MD
- Chien-Yuan Chen, MD, PhD
- Shang-Ju Wu, MD, PhD
- Chien-Ting Lin, MD
- Tai-Chung Huang, MD, PhD
- Jia-Hui Liu, MD
- Chieh-Lung Cheng, MD
- Ming-Kai Chuang, MD
- Cheng-Hong Tsai, MD

All patients that participated in this study